Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2937, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580628

RESUMO

Rare-earth monopnictides are a family of materials simultaneously displaying complex magnetism, strong electronic correlation, and topological band structure. The recently discovered emergent arc-like surface states in these materials have been attributed to the multi-wave-vector antiferromagnetic order, yet the direct experimental evidence has been elusive. Here we report observation of non-collinear antiferromagnetic order with multiple modulations using spin-polarized scanning tunneling microscopy. Moreover, we discover a hidden spin-rotation transition of single-to-multiple modulations 2 K below the Néel temperature. The hidden transition coincides with the onset of the surface states splitting observed by our angle-resolved photoemission spectroscopy measurements. Single modulation gives rise to a band inversion with induced topological surface states in a local momentum region while the full Brillouin zone carries trivial topological indices, and multiple modulation further splits the surface bands via non-collinear spin tilting, as revealed by our calculations. The direct evidence of the non-collinear spin order in NdSb not only clarifies the mechanism of the emergent topological surface states, but also opens up a new paradigm of control and manipulation of band topology with magnetism.

2.
Science ; 383(6683): 634-639, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38330133

RESUMO

The interface between two different materials can show unexpected quantum phenomena. In this study, we used molecular beam epitaxy to synthesize heterostructures formed by stacking together two magnetic materials, a ferromagnetic topological insulator (TI) and an antiferromagnetic iron chalcogenide (FeTe). We observed emergent interface-induced superconductivity in these heterostructures and demonstrated the co-occurrence of superconductivity, ferromagnetism, and topological band structure in the magnetic TI layer-the three essential ingredients of chiral topological superconductivity (TSC). The unusual coexistence of ferromagnetism and superconductivity is accompanied by a high upper critical magnetic field that exceeds the Pauli paramagnetic limit for conventional superconductors at low temperatures. These magnetic TI/FeTe heterostructures with robust superconductivity and atomically sharp interfaces provide an ideal wafer-scale platform for the exploration of chiral TSC and Majorana physics.

3.
Nat Mater ; 23(1): 58-64, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37857889

RESUMO

A quantum anomalous Hall (QAH) insulator is a topological phase in which the interior is insulating but electrical current flows along the edges of the sample in either a clockwise or counterclockwise direction, as dictated by the spontaneous magnetization orientation. Such a chiral edge current eliminates any backscattering, giving rise to quantized Hall resistance and zero longitudinal resistance. Here we fabricate mesoscopic QAH sandwich Hall bar devices and succeed in switching the edge current chirality through thermally assisted spin-orbit torque (SOT). The well-quantized QAH states before and after SOT switching with opposite edge current chiralities are demonstrated through four- and three-terminal measurements. We show that the SOT responsible for magnetization switching can be generated by both surface and bulk carriers. Our results further our understanding of the interplay between magnetism and topological states and usher in an easy and instantaneous method to manipulate the QAH state.

4.
Adv Mater ; 36(13): e2310249, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38118065

RESUMO

Magnetic topological states refer to a class of exotic phases in magnetic materials with the non-trivial topological property determined by magnetic spin configurations. An example of such states is the quantum anomalous Hall (QAH) state, which is a zero magnetic field manifestation of the quantum Hall effect. Current research in this direction focuses on QAH insulators with a thickness of less than 10 nm. Here, molecular beam epitaxy (MBE) is employed to synthesize magnetic TI trilayers with a thickness of up to ≈106 nm. It is found that these samples exhibit well-quantized Hall resistance and vanishing longitudinal resistance at zero magnetic field. By varying the magnetic dopants, gate voltages, temperature, and external magnetic fields, the properties of these thick QAH insulators are examined and the robustness of the 3D QAH effect is demonstrated. The realization of the well-quantized 3D QAH effect indicates that the nonchiral side surface states of the thick magnetic TI trilayers are gapped and thus do not affect the QAH quantization. The 3D QAH insulators of hundred-nanometer thickness provide a promising platform for the exploration of fundamental physics, including axion physics and image magnetic monopole, and the advancement of electronic and spintronic devices to circumvent Moore's law.

5.
Nat Commun ; 14(1): 7596, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989754

RESUMO

An axion insulator is a three-dimensional (3D) topological insulator (TI), in which the bulk maintains the time-reversal symmetry or inversion symmetry but the surface states are gapped by surface magnetization. The axion insulator state has been observed in molecular beam epitaxy (MBE)-grown magnetically doped TI sandwiches and exfoliated intrinsic magnetic TI MnBi2Te4 flakes with an even number layer. All these samples have a thickness of ~ 10 nm, near the 2D-to-3D boundary. The coupling between the top and bottom surface states in thin samples may hinder the observation of quantized topological magnetoelectric response. Here, we employ MBE to synthesize magnetic TI sandwich heterostructures and find that the axion insulator state persists in a 3D sample with a thickness of ~ 106 nm. Our transport results show that the axion insulator state starts to emerge when the thickness of the middle undoped TI layer is greater than ~ 3 nm. The 3D hundred-nanometer-thick axion insulator provides a promising platform for the exploration of the topological magnetoelectric effect and other emergent magnetic topological states, such as the high-order TI phase.

6.
Nat Commun ; 14(1): 7119, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932274

RESUMO

Over the last decade, the possibility of realizing topological superconductivity (TSC) has generated much excitement. TSC can be created in electronic systems where the topological and superconducting orders coexist, motivating the continued exploration of candidate material platforms to this end. Here, we use molecular beam epitaxy (MBE) to synthesize heterostructures that host emergent interfacial superconductivity when a non-superconducting antiferromagnet (FeTe) is interfaced with a topological insulator (TI) (Bi, Sb)2Te3. By performing in-vacuo angle-resolved photoemission spectroscopy (ARPES) and ex-situ electrical transport measurements, we find that the superconducting transition temperature and the upper critical magnetic field are suppressed when the chemical potential approaches the Dirac point. We provide evidence to show that the observed interfacial superconductivity and its chemical potential dependence is the result of the competition between the Ruderman-Kittel-Kasuya-Yosida-type ferromagnetic coupling mediated by Dirac surface states and antiferromagnetic exchange couplings that generate the bicollinear antiferromagnetic order in the FeTe layer.

7.
Nano Lett ; 23(7): 2483-2489, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36930727

RESUMO

To date, the quantum anomalous Hall effect has been realized in chromium (Cr)- and/or vanadium(V)-doped topological insulator (Bi,Sb)2Te3 thin films. In this work, we use molecular beam epitaxy to synthesize both V- and Cr-doped Bi2Te3 thin films with controlled dopant concentration. By performing magneto-transport measurements, we find that both systems show an unusual yet similar ferromagnetic response with respect to magnetic dopant concentration; specifically the Curie temperature does not increase monotonically but shows a local maximum at a critical dopant concentration. We attribute this unusual ferromagnetic response observed in Cr/V-doped Bi2Te3 thin films to the dopant-concentration-induced magnetic exchange interaction, which displays evolution from van Vleck-type ferromagnetism in a nontrivial magnetic topological insulator to Ruderman-Kittel-Kasuya-Yosida (RKKY)-type ferromagnetism in a trivial diluted magnetic semiconductor. Our work provides insights into the ferromagnetic properties of magnetically doped topological insulator thin films and facilitates the pursuit of high-temperature quantum anomalous Hall effect.

8.
Nat Mater ; 22(5): 570-575, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36781950

RESUMO

The introduction of superconductivity to the Dirac surface states of a topological insulator leads to a topological superconductor, which may support topological quantum computing through Majorana zero modes1,2. The development of a scalable material platform is key to the realization of topological quantum computing3,4. Here we report on the growth and properties of high-quality (Bi,Sb)2Te3/graphene/gallium heterostructures. Our synthetic approach enables atomically sharp layers at both hetero-interfaces, which in turn promotes proximity-induced superconductivity that originates in the gallium film. A lithography-free, van der Waals tunnel junction is developed to perform transport tunnelling spectroscopy. We find a robust, proximity-induced superconducting gap formed in the Dirac surface states in 5-10 quintuple-layer (Bi,Sb)2Te3/graphene/gallium heterostructures. The presence of a single Abrikosov vortex, where the Majorana zero modes are expected to reside, manifests in discrete conductance changes. The present material platform opens up opportunities for understanding and harnessing the application potential of topological superconductivity.

9.
J Phys Condens Matter ; 35(12)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689777

RESUMO

The presence of in-plane chiral effects, hence spin-orbit coupling, is evident in the changes in the photocurrent produced in a TiS3(001) field-effect phototransistor with left versus right circularly polarized light. The direction of the photocurrent is protected by the presence of strong spin-orbit coupling and the anisotropy of the band structure as indicated in NanoARPES measurements. Dark electronic transport measurements indicate that TiS3is n-type and has an electron mobility in the range of 1-6 cm2V-1s-1.I-Vmeasurements under laser illumination indicate the photocurrent exhibits a bias directionality dependence, reminiscent of bipolar spin diode behavior. Because the TiS3contains no heavy elements, the presence of spin-orbit coupling must be attributed to the observed loss of inversion symmetry at the TiS3(001) surface.

10.
Nat Mater ; 21(12): 1366-1372, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36302957

RESUMO

A topological insulator (TI) interfaced with an s-wave superconductor has been predicted to host topological superconductivity. Although the growth of epitaxial TI films on s-wave superconductors has been achieved by molecular-beam epitaxy, it remains an outstanding challenge for synthesizing atomically thin TI/superconductor heterostructures, which are critical for engineering the topological superconducting phase. Here we used molecular-beam epitaxy to grow Bi2Se3 films with a controlled thickness on monolayer NbSe2 and performed in situ angle-resolved photoemission spectroscopy and ex situ magnetotransport measurements on these heterostructures. We found that the emergence of Rashba-type bulk quantum-well bands and spin-non-degenerate surface states coincides with a marked suppression of the in-plane upper critical magnetic field of the superconductivity in Bi2Se3/monolayer NbSe2 heterostructures. This is a signature of a crossover from Ising- to Rashba-type superconducting pairings, induced by altering the Bi2Se3 film thickness. Our work opens a route for exploring a robust topological superconducting phase in TI/Ising superconductor heterostructures.

11.
Nano Lett ; 21(18): 7691-7698, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34468149

RESUMO

Recently, MnBi2Te4 has been demonstrated to be an intrinsic magnetic topological insulator and the quantum anomalous Hall (QAH) effect was observed in exfoliated MnBi2Te4 flakes. Here, we used molecular beam epitaxy (MBE) to grow MnBi2Te4 films with thickness down to 1 septuple layer (SL) and performed thickness-dependent transport measurements. We observed a nonsquare hysteresis loop in the antiferromagnetic state for films with thickness greater than 2 SL. The hysteresis loop can be separated into two AH components. We demonstrated that one AH component with the larger coercive field is from the dominant MnBi2Te4 phase, whereas the other AH component with the smaller coercive field is from the minor Mn-doped Bi2Te3 phase. The extracted AH component of the MnBi2Te4 phase shows a clear even-odd layer-dependent behavior. Our studies reveal insights on how to optimize the MBE growth conditions to improve the quality of MnBi2Te4 films.

12.
Sci Rep ; 11(1): 4924, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649414

RESUMO

We use circular dichroism (CD) in time- and angle-resolved photoemission spectroscopy (trARPES) to measure the femtosecond charge dynamics in the topological insulator (TI) [Formula: see text]. We detect clear CD signatures from topological surface states (TSS) and surface resonance (SR) states. In time-resolved measurements, independently from the pump polarization or intensity, the CD shows a dynamics which provides access to the unexplored electronic evolution in unoccupied states of [Formula: see text]. In particular, we are able to disentangle the unpolarized electron dynamics in the bulk states from the spin-textured TSS and SR states on the femtosecond timescale. Our study demonstrates that photoexcitation mainly involves the bulk states and is followed by sub-picosecond transport to the surface. This provides essential details on intra- and interband scattering in the relaxation process of TSS and SR states. Our results reveal the significant role of SRs in the subtle ultrafast interaction between bulk and surface states of TIs.

13.
Nature ; 588(7838): 419-423, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33328665

RESUMO

A quantum anomalous Hall (QAH) state is a two-dimensional topological insulating state that has a quantized Hall resistance of h/(Ce2) and vanishing longitudinal resistance under zero magnetic field (where h is the Planck constant, e is the elementary charge, and the Chern number C is an integer)1,2. The QAH effect has been realized in magnetic topological insulators3-9 and magic-angle twisted bilayer graphene10,11. However, the QAH effect at zero magnetic field has so far been realized only for C = 1. Here we realize a well quantized QAH effect with tunable Chern number (up to C = 5) in multilayer structures consisting of alternating magnetic and undoped topological insulator layers, fabricated using molecular beam epitaxy. The Chern number of these QAH insulators is determined by the number of undoped topological insulator layers in the multilayer structure. Moreover, we demonstrate that the Chern number of a given multilayer structure can be tuned by varying either the magnetic doping concentration in the magnetic topological insulator layers or the thickness of the interior magnetic topological insulator layer. We develop a theoretical model to explain our experimental observations and establish phase diagrams for QAH insulators with high, tunable Chern number. The realization of such insulators facilitates the application of dissipationless chiral edge currents in energy-efficient electronic devices, and opens up opportunities for developing multi-channel quantum computing and higher-capacity chiral circuit interconnects.

14.
ACS Appl Mater Interfaces ; 12(36): 40525-40531, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32805799

RESUMO

Photocurrent production in quasi-one-dimensional (1D) transition-metal trichalcogenides, TiS3(001) and ZrS3(001), was examined using polarization-dependent scanning photocurrent microscopy. The photocurrent intensity was the strongest when the excitation source was polarized along the 1D chains with dichroic ratios of 4:1 and 1.2:1 for ZrS3 and TiS3, respectively. This behavior is explained by symmetry selection rules applicable to both valence and conduction band states. Symmetry selection rules are seen to be applicable to the experimental band structure, as is observed in polarization-dependent nanospot angle-resolved photoemission spectroscopy. Based on these band symmetry assignments, it is expected that the dichroic ratios for both materials will be maximized using excitation energies within 1 eV of their band gaps, providing versatile polarization sensitive photodetection across the visible spectrum and into the near-infrared.

15.
J Phys Condens Matter ; 32(29): 29LT01, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32209749

RESUMO

The band structure of the quasi-one-dimensional transition metal trichalcogenide ZrS3(001) was investigated using nanospot angle resolved photoemission spectroscopy (nanoARPES) and shown to have many similarities with the band structure of TiS3(001). We find that ZrS3, like TiS3, is strongly n-type with the top of the valence band ∼1.9 eV below the Fermi level, at the center of the surface Brillouin zone. The nanoARPES spectra indicate that the top of the valence band of the ZrS3(001) is located at [Formula: see text]. The band structure of both TiS3 and ZrS3 exhibit strong in-plane anisotropy, which results in a larger hole effective mass along the quasi-one-dimensional chains than perpendicular to them.

16.
Nat Commun ; 11(1): 546, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992694

RESUMO

The properties of van der Waals (vdW) materials often vary dramatically with the atomic stacking order between layers, but this order can be difficult to control. Trilayer graphene (TLG) stacks in either a semimetallic ABA or a semiconducting ABC configuration with a gate-tunable band gap, but the latter has only been produced by exfoliation. Here we present a chemical vapor deposition approach to TLG growth that yields greatly enhanced fraction and size of ABC domains. The key insight is that substrate curvature can stabilize ABC domains. Controllable ABC yields ~59% were achieved by tailoring substrate curvature levels. ABC fractions remained high after transfer to device substrates, as confirmed by transport measurements revealing the expected tunable ABC band gap. Substrate topography engineering provides a path to large-scale synthesis of epitaxial ABC-TLG and other vdW materials.

17.
ACS Nano ; 13(11): 13486-13491, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31644265

RESUMO

Manipulation of intrinsic electronic structures by electron or hole doping in a controlled manner in van der Waals layered materials is the key to control their electrical and optical properties. Two-dimensional indium selenide (InSe) semiconductor has attracted attention due to its direct band gap and ultrahigh mobility as a promising material for optoelectronic devices. In this work, we manipulate the electronic structure of InSe by in situ surface electron doping and obtain a significant band gap renormalization of ∼120 meV directly observed by high-resolution angle resolved photoemission spectroscopy. This moderate doping level (carrier concentration of 8.1 × 1012 cm-2) can be achieved by electrical gating in field effect transistors, demonstrating the potential to design of broad spectral response devices.

18.
Nano Lett ; 19(4): 2682-2687, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30888827

RESUMO

Electrostatic gating is pervasive in materials science, yet its effects on the electronic band structure of materials has never been revealed directly by angle-resolved photoemission spectroscopy (ARPES), the technique of choice to noninvasively probe the electronic band structure of a material. By means of a state-of-the-art ARPES setup with submicron spatial resolution, we have investigated a heterostructure composed of Bernal-stacked bilayer graphene (BLG) on hexagonal boron nitride and deposited on a graphite flake. By voltage biasing the latter, the electric field effect is directly visualized on the valence band as well as on the carbon 1s core level of BLG. The band gap opening of BLG submitted to a transverse electric field is discussed and the importance of intra layer screening is put forward. Our results pave the way for new studies that will use momentum-resolved electronic structure information to gain insight on the physics of materials submitted to the electric field effect.

19.
Sci Rep ; 5: 13036, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26267653

RESUMO

The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

20.
Sci Rep ; 4: 6106, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25139455

RESUMO

The three-dimensional topological semimetals represent a new quantum state of matter. Distinct from the surface state in the topological insulators that exhibits linear dispersion in two-dimensional momentum plane, the three-dimensional semimetals host bulk band dispersions linearly along all directions. In addition to the gapless points in the bulk, the three-dimensional Weyl/Dirac semimetals are also characterized by "topologically protected" surface state with Fermi arcs on their surface. While Cd3As2 is proposed to be a viable candidate of a Dirac semimetal, more investigations are necessary to pin down its nature. In particular, the topological surface state, the hallmark of the three-dimensional semimetal, has not been observed in Cd3As2. Here we report the electronic structure of Cd3As2 investigated by angle-resolved photoemission measurements on the (112) crystal surface and detailed band structure calculations. The measured Fermi surface and band structure show a good agreement with the band structure calculations with two bulk Dirac-like bands approaching the Fermi level and forming Dirac points near the Brillouin zone center. Moreover, the topological surface state with a linear dispersion approaching the Fermi level is identified for the first time. These results provide experimental indications on the nature of topologically non-trivial three-dimensional Dirac cones in Cd3As2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...